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A B S T R A C T

By harnessing a mental model of how the world works, learners can make flexible choices in changing envi
ronments. However, while children and adolescents readily acquire structured knowledge of their environments, 
relative to adults, they often demonstrate weaker signatures of leveraging this knowledge to plan actions. One 
explanation for these developmental differences is that using a mental model to prospectively simulate potential 
choices and their outcomes is computationally costly, taxing cognitive mechanisms that develop into adulthood. 
Here, we ask whether children effectively leverage structured knowledge to make flexible choices by relying on 
two alternative strategies that do not require costly mental simulation at choice time. First, through offline 
replanning, models can be queried before the time of choice to update the values of potential actions. Second, an 
abstracted predictive model, known as a successor representation (SR), can enable simplified computation of 
long-run reward values of candidate actions without requiring iterative simulation of multiple time steps. Here, 
across three experiments, we assessed whether children, adolescents, and adults aged 7–23 years similarly 
harness these learning strategies. In a reward revaluation task, we found that children flexibly updated their 
behavior by leveraging structured knowledge, but that across age, the opportunity for offline replanning during 
rest did not influence behavior. While participants may have leveraged a detailed mental model of the task 
structure, they may have also relied on simplified, predictive representations to guide their choices. We then 
directly tested whether children use predictive representations and observed early-emerging use of the SR, 
providing a mechanistic account of how children use structured knowledge to guide choice without detailed 
model-based simulation.

1. Introduction

To make good choices in a richly structured and changing world, 
people can learn and exploit relations between different actions and 
events to guide their decisions. By relying on knowledge of the envi
ronment (an “internal model”) to mentally simulate different sequences 
of actions and the outcomes they are likely to yield (Balleine & 
O’Doherty, 2010; Daw et al., 2005; Doll et al., 2015; Vikbladh et al., 
2024), learners can flexibly update their beliefs in the absence of direct 
experience. This form of learning, known as “model-based” learning, 
enables rapid adaptation to changing environments, though with a high 
computational cost. Learners can also update the estimated values of 

their actions experientially, based on the outcomes that their actions 
ultimately yield. However, while this “model-free” form of learning is 
computationally efficient, it is also rigid — if the environment changes, a 
model-free learner can only update their estimated values for different 
actions by taking those actions and experiencing their new conse
quences. Evidence suggests that human learners exploit both model- 
based and model-free approaches, trading off flexibility and efficiency 
across different environments based on the demands of the learning 
problems they face (Daw et al., 2005; Kool et al., 2017). Recent work 
further suggests that beyond simply switching between these two forms 
of learning, adults also exploit alternative learning and decision strate
gies that balance the efficiency of model-free learning with the flexibility 
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of model-based learning (Collins & Cockburn, 2020; Dolan & Dayan, 
2013; Doll et al., 2012; Keramati et al., 2016). To date, however, it is 
unclear whether children and adolescents also use these “intermediate” 
learning strategies to guide their choices.

Like adults, children and adolescents frequently experience changing 
environments in which flexible decision making can be facilitated 
through the use of structured knowledge. However, the strategies that 
people use to make rewarding choices change across development (Raab 
& Hartley, 2018). While signatures of model-free learning strategies 
remain relatively consistent across age, evidence of model-based 
learning increases into adolescence and early adulthood (Cohen et al., 
2020; Decker et al., 2016; Nussenbaum, Scheuplein, et al., 2020; Pal
minteri et al., 2016; Potter et al., 2017; Smid, Ganesan, et al., 2023). 
However, even in contexts in which children fail to use world models to 
guide their choices, in many cases, they still acquire structured knowl
edge about their learning environments that is revealed in other ways. 
For instance, they can explicitly report the states to which their actions 
may lead (Decker et al., 2016; Nussenbaum, Scheuplein, et al., 2020; 
Potter et al., 2017) or the likely causal source of good and bad outcomes 
(Cohen et al., 2020).

This developmental dissociation between learning a model of the 
world and using it to guide decision making is a puzzling phenomenon 
(Hartley et al., 2021) — why do children often fail to use the knowledge 
they have acquired? One possibility is that the iterative, forward simu
lation processes on which model-based decision making depends are 
computationally costly. By this, we mean that they require the 
engagement of proactive cognitive control and working memory — 
cognitive abilities that continue to develop into adolescence and early 
adulthood and facilitate greater capacity for manipulating information 
in mind and faster processing speeds (Amso et al., 2014; Luna, 2009). 
Indeed, previous work has observed age-related change in behavior 
consistent with increases in planning depth (Ma et al., 2022), suggesting 
that iterative, step-by-step simulation of sequences of actions and out
comes improves and increasingly facilitates people’s choices from 
childhood to early adulthood. Previous work on causal reasoning has 
also shown that children tend to perform worse than adults on tasks that 
require mental simulation of counterfactual possibilities (Kominsky 
et al., 2021; Nussenbaum, Cohen, et al., 2020; Rafetseder et al., 2013). In 
addition, young children demonstrate signatures of model-based 
behavior in simpler tasks with little to no planning depth (Kenward 
et al., 2009; Klossek et al., 2008), where fewer sequential outcomes and 
actions would need to be mentally simulated. Taken together, this work 
suggests that children may learn complex models of the environment but 
not use them to the same extent or in the same way as adults, and 
furthermore that this difference is likely due to the cognitive demands 
involved in iteratively computing the consequences of different actions 
across multiple future timesteps. It may be that these limitations are, in 
part, due to limited decision time — in many prior studies of model- 
based learning (Decker et al., 2016; Nussenbaum, Scheuplein, et al., 
2020), participants had only a short temporal window to make their 
choices, which may have been particularly consequential for younger 
participants with slower processing speeds.

If children’s failure to use knowledge of their environments to the 
same extent as adults is due to limitations in mentally simulating deci
sion trajectories, then they may be able to leverage structured knowl
edge to make rewarding decisions when the demand for rapid, online, 
step-by-step simulation is attenuated. In the present series of studies, 
we ask whether children use structured knowledge to flexibly guide 
their choices when learning in environments that do not require, at the 
time of choice, the costly mental simulation associated with “pure” 
model-based learning strategies. We consider two alternative strategies 
that have been shown to support decision making in adults: leveraging 
models for evaluation offline (before a choice is faced), and using 
abstracted models, such as the successor representation (SR), that 
collapse multiple timesteps. These two strategies may respectively help 
children overcome the time and capacity costs of iterative mental 

simulation.
While model-based learning algorithms posit that iterative, mental 

simulation occurs at the time of choice, mental models can also be used 
to simulate potential sequences of experiences and update value repre
sentations before the need to select an action (Sutton, 1991). We use the 
term offline evaluation to describe such mental simulation that occurs 
after reward receipt or during rest rather than at the moment of choice. 
Offline evaluation may enable the brain to exploit periods of rest for 
learning, reducing the need for online planning at the time of choice. 
Offline evaluation may involve “replay” or the reactivation of memories 
of previous experiences, enabling them to be linked to newly experi
enced reward outcomes (Lengyel & Dayan, 2007; Sutton, 1991). 
Extensive work using multi-step decision tasks has found that adults 
leverage mental models to flexibly update their choice behavior after 
rewards in the environment change (Boddez et al., 2011; Dickinson & 
Burke, 1996; Liljeholm & Balleine, 2009). It was initially assumed that 
forward planning at the time of choice accounted for this success, but it 
may be the case that adults “solve” these tasks by learning during “off
line” periods of rest. Recent work that has manipulated the opportunity 
for offline evaluation (Gershman et al., 2014) and measured neural ac
tivity during rest periods within the task (Momennejad et al., 2018) 
suggests that adults do indeed leverage offline evaluation to support 
value-guided decision making.

In addition to offline evaluation, use of abstracted world models such 
as the successor representation (SR) also can enable behavioral flexi
bility without requiring iterative, online forward simulation (Dayan, 
1993). What makes traditional model-based evaluation costly is the 
requirement to iteratively search through multiple steps to piece 
together the likely outcomes of candidate actions. The SR is a predictive 
representation that stores, for each state, aggregated (rather than indi
vidual step-by-step) expectations about the future states that will likely 
follow it at some later point, potentially after multiple steps. The SR can 
be used to guide choice by combining these future-state expectations 
with information about the value of each state. Critically, the SR’s ag
gregation simplifies this process by removing the need for iterative, step- 
by-step simulation of the potential sequences of states that may be 
experienced following an initial choice. Prior work using a number of 
different tasks has demonstrated evidence that people both form such 
temporally abstracted representations, and use them to guide choices 
(Garvert et al., 2017; Gershman, 2018; Kahn & Daw, 2025; Momenne
jad, 2020; Momennejad et al., 2017; Russek et al., 2021). In reward 
revaluation tasks, for example, adults may update their behavior by 
relying on statistical knowledge about the final states they tend to 
experience after each initial choice, leveraging these predictive repre
sentations when rewards change to compute new action values without 
costly forward simulation of all intermediate time steps (Momennejad 
et al., 2017).

Evidence that children “fail” to use structured knowledge to guide 
their decisions to the same extent as adults comes largely from tasks that 
may not afford the use of intermediate learning strategies like offline 
evaluation or the use of abstracted representations. Adults’ use of such 
strategies raises the intriguing possibility that children and adolescents 
may similarly be able to harness internal models to make good choices in 
environments that permit them to be used via less costly computations. 
In the present series of studies, we ask whether and how children and 
adolescents harness structured knowledge to guide their choices when 
they can rely on intermediate learning strategies that combine the effi
ciency of model-free learning with the flexibility of model-based 
computation. In Experiment 1, we demonstrate that children and ado
lescents flexibly update their behavior in a reward revaluation task, 
when given the opportunity for offline replay. This provides evidence 
that children can indeed learn and use structured task knowledge in 
certain contexts, and accords with prior work where model-based 
behavior was demonstrated at younger ages (Kenward et al., 2009; 
Klossek et al., 2008). In Experiment 2, we further probe whether offline 
replay during rest facilitates flexible replanning by removing the task’s 
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rest period. Here, we found that the removal of the rest phase did not 
significantly affect participants’ behavioral flexibility, suggesting that a 
different strategy, such as online model-based planning or the use of 
predictive representations, may underlie children’s ability to leverage 
structured knowledge in this task. In our final experiment, we directly 
ask whether children and adolescents make use of predictive represen
tations like the SR. Using a multi-trial reinforcement learning task to 
concurrently characterize the use of model-free, model-based, and SR- 
based strategies, we find evidence for use of SR-based strategies in 
children as young as 8 years old. This suggests that young children are 
able to learn predictive representations and use them to flexibly guide 
behavior in environments with changing rewards.

Together, our results across three studies demonstrate that children 
effectively leverage structured knowledge to guide decision making and 
that they can do so by relying on predictive representations like the 
successor representation. Results from these experiments help to resolve 
the puzzle of why children often demonstrate adult-like learning but 
reduced use of structured knowledge, and suggest that children do 
harness sophisticated, predictive representations to guide choice when 
the learning environments they face allow them to do so.

2. Experiments 1 and 2

2.1. Methods

2.1.1. Participants

2.1.1.1. Experiment 1. 119 participants between the ages of 7–23 years 
completed the experiment online, remotely and asynchronously, and 
were included in the analyses. An additional 37 participants completed 
the study but were excluded from all analyses for predefined exclusion 
criteria including interacting with their browser window more than 20 
times during the study session (n = 2 Adolescents), failing to respond on 
more than 15 % of the 100 learning trials or more than 15 % of the 84 
memory trials (n = 2 Adults), making four or more errors on the task 
comprehension questions (n = 1 Adolescent), failing more than five out 
of 16 attention-check trials (n = 10 Children, n = 2 Adolescents, n = 1 
Adult; see task details below), failing to learn to criterion in the learning 
phase of the task (n = 10 Children, n = 3 Adolescents, n = 5 Adults; see 
task details below), or potential parental interference (n = 1 Child). 
Sample size was determined a priori based on past work on decision 
making in age-continuous developmental samples (Jones et al., 2014; 
Ma et al., 2022; Nussenbaum et al., 2023; Nussenbaum, Scheuplein, 
et al., 2020; Somerville et al., 2017). Of the 119 participants included in 
the analyses, 42 were children (7.02–12.99 years; Mean age = 10.14; n 
= 19 females), 35 were adolescents (13.03–17.82 years; Mean age =
15.47; n = 17 females), and 42 were adults (18.42–23.82 years; Mean 
age = 20.96; n = 22 females). The study took approximately 40 min to 
complete and participants were paid via a $10 Amazon gift card along 
with an additional bonus that ranged from $0–5 based on task 
performance.

Participants were recruited primarily via Facebook and Instagram 
ads, as well as via word-of-mouth, local events, and flyers distributed 
around NYU. Prior to being eligible to participate in the online study, all 
participants were pre-screened in a 5-min video call with a researcher, 
during which they were required to be on camera and to confirm their 
full name and date of birth. Adult participants and parents of child and 
adolescent participants were additionally required to show photo 
identification. According to self- or parental-report, participants had 
normal or corrected-to-normal vision and no diagnosed psychiatric, 
neurodevelopmental, or learning disorders. 52.5 % of participants were 
White, 30.0 % were Asian, 8.3 % were Black, and 9.2 % were two or 
more races. In addition, 12.5 % of participants were Hispanic.

2.1.1.2. Experiment 2. 119 new participants between the ages of 7–23 

years completed the task and were included in the analyses. Recruitment 
methods, exclusion criteria, and payment methods were the same as for 
Experiment 1, and participants who had already completed Experiment 
1 were excluded from participating. Of the 119 participants included in 
the analyses, 41 participants were children (7.02–12.95 years; Mean age 
= 10.00, n = 18 females), 33 were adolescents (13.28–17.92 years; 
Mean age = 15.33, n = 15 females), and 45 were adults (18.05–24.00 
years; Mean age = 20.90, n = 24 females). An additional 65 participants 
completed the study but were excluded for interacting with their 
browser window more than 20 times during the study session (n = 1 
Child, n = 1 Adolescent, n = 2 Adults), failing to respond on more than 
15 % of 100 learning trials or failing to respond on more than 15 % of 84 
memory trials (n = 4 Children, n = 2 Adolescents, n = 1 Adult), making 
four or more errors on the task comprehension questions (n = 1 Chil
dren), failing more than five out of 16 attention-check trials (n = 14 
Children, n = 8 Adolescents, n = 2 Adults), failing to learn to criterion in 
the learning phase of the task (n = 20 Children, n = 5 Adolescents, n = 3 
Adults), or potential parental interference (n = 1 Children). According to 
self- or parental-report, 45 % of participants were White, 32.5 % were 
Asian, 7.5 % were Black, and 15 % were two or more races. In addition, 
13.3 % of participants were Hispanic.

2.1.2. Experimental procedure
In both Experiments 1 and 2, participants completed an adapted 

version of a two-stage reward revaluation task used in prior adult work 
(Momennejad et al., 2018). The task was designed to assess whether 
participants across age relied on offline processing to flexibly update 
their choices when rewards in the environment changed. In the first 
stage of the task, participants learned to make two sequential choices to 
gain reward. Next, we elicited the need to update first-stage choices by 
changing the rewards in the environment. Participants experienced new 
rewards only in a “relearning” phrase of the task, where they did not 
make first-stage choices. In the final “test” phase, participants once 
again made first-stage choices. Here, we assessed whether participants 
chose the same first-stage choices that led to reward in the original 
learning phase, or whether they successfully “replanned” and used their 
knowledge of the new, second-stage rewards to update their first-stage 
choices. Critically, because participants did not make first-stage 
choices during relearning, replanning required leveraging their knowl
edge of the transition structure of the task. To gain insight into whether 
participants relied on offline processing to replan, we manipulated the 
opportunity for offline processing by including a rest phase after 
relearning in Experiment 1 but not Experiment 2.

The online task was programmed using jsPsych (de Leeuw, 2015) 
and hosted on Pavlovia. Our child-friendly task version was framed 
within a “Treasure Hunt” narrative, in which participants’ overall goal 
was to find the most treasure. Participants completed two blocks of the 
task (Fig. 1A). In each task block, participants were told that they were 
in a specific environment (ocean or canyon) in which there were two 
different animals (seahorse and octopus, or lion and giraffe, respec
tively). Each animal had two treasure chests that contained different 
amounts of treasure (Fig. 1B).

As described above, the task consisted of four phases: learning, re- 
learning, rest, and test. In the learning phase of the task, participants 
made 42 two-stage decisions to try to find the most treasure. Participants 
were told that their bonus payment would be contingent on how much 
treasure they found. On each trial, in the first decision stage, they saw a 
trial-unique image of the environment and had to choose to go either up 
or down to find an animal. Animals remained in the same position for 
the duration of the block. After reaching an animal, participants made a 
second-stage decision between the animal’s left and right treasure 
chests. Each of the four chests had a different amount of treasure (be
tween 5 and 50 pieces) that remained constant throughout the learning 
phase of each task block, allowing participants to learn to navigate to the 
most rewarding chest across trials. Participants had a time limit of 2 s to 
make each choice; if they did not make a choice within the allotted time, 
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the trial ended and participants lost five points.
After completing the learning phase, participants moved on to the re- 

learning phase of the task. In the re-learning phase, participants did not 
make first-stage choices. Instead, participants were told that they were 
traveling with a friend who would make first-stage choices for them. 
Participants were shown each of the two animals from the learning 
phase eight times (in a randomized order) and asked to select between 
their two chests. Importantly, the re-learning phase differed between the 
two blocks of the experiment. In one block of the task, participants 
experienced the revaluation condition, in which the amount of treasure 
in each chest changed between learning and re-learning so that the most 
valuable chest in the re-learning phase belonged to a different animal 
than in the original learning phase (Fig. 1B). The task also featured a 
control condition, where treasure amounts in the re-learning phase 
remained unchanged from the original learning phase. This was 
designed to control for the fact that participants may update their first- 
stage choices after relearning due to factors such as forgetting, rather 
than due to learning new reward values. Participants were not explicitly 
informed that rewards would or would not change at the start of this 
phase. The order of the revaluation and control blocks and the stimulus 
set (ocean or canyon) assigned to each condition were counterbalanced 
within each age group. As in the learning phase, participants had a time 
limit of 2 s to make each choice.

In Experiment 1 but not in Experiment 2, participants next 
completed an ‘active rest’ phase, during which we hypothesized they 
may ‘replay’ or reactivate the first-stage decisions, linking them via 
offline processing to the newly learned reward outcomes (Momennejad 
et al., 2018). During the rest phase, participants completed a 60-s task 
that was designed to ensure that they attended to the screen while being 
non-cognitively demanding. In the task, animated red dots moved 

slowly from the top to the bottom of the screen over approximately 4 s, 
and participants were instructed to click on them. Only one dot 
appeared on the screen at a time; new dots appeared 5 to 10 s after the 
previous dot was no longer present. All 119 participants in Experiment 1 
included in the final sample missed fewer than four dots during the 
active rest phase.

After the rest phase, participants proceeded to ‘test,’ during which 
we assessed whether they updated their first-stage choices based on 
rewards experienced during relearning. In the test phase, participants 
made four first-stage choices, in which they saw the first-stage state (e. 
g., an image of an ocean or canyon, depending on what block they were 
in) and had to choose whether to go up or down. Participants were told 
to try to navigate to the animal with the most treasure. Unlike in the 
learning phase, here, to prevent continued learning, participants did not 
see any feedback, meaning they did not see which animal their choice 
led to. In addition, after making four first-stage choices, participants also 
made four second-stage choices starting from each of the two second- 
stage states (animals). Participants had 10 s to make each choice, but 
were not informed that they would have more time than in previous 
phases.

Finally, participants completed a surprise memory test for the first- 
stage state images they had seen during initial learning. We originally 
hypothesized that replanning would be facilitated by the reactivation of 
the first-stage states during the rest phase; we posited that such reac
tivation may also facilitate enhanced memory for the first-stage state 
images, such that participants who demonstrated the strongest replan
ning would also demonstrate the best memory for images from the 
learning phase, particularly within the revaluation condition. The im
ages presented during learning were matched for memorability, such 
that images from the category used in each of the two blocks were 

Fig. 1. (A) In both Experiments 1 and 2, participants completed two blocks of the reward revaluation task, followed by a recognition memory test. The task consisted 
of four phases: learning, re-learning, rest, and test. In the learning phase, participants made a series of two-stage decisions to earn treasure. They first chose an animal 
and then selected one of the animal’s chests, which revealed the amount of treasure they would earn on that trial. During the relearning phase, participants only 
made second-stage choices between each animal’s chests. In the revaluation condition, reward values during relearning were different from reward values in the 
learning phase, such that the optimal treasure chest choice for each animal changed. In the control condition, reward values did not change. After the relearning 
phase, participants in Experiment 1 completed a 1-min active rest phase where they were required to attend to the screen to perform a simple, non-cognitively 
demanding task. In Experiment 2, participants did not experience the rest phase, and instead proceeded directly from the relearning phase to the test phase. The 
test phase was designed to assess whether participants updated their first- and second-stage choice preferences based on the rewards they observed during relearning. 
In the test phase, participants made four first-stage choices without feedback, followed by eight second-stage choices without feedback. After completing two blocks 
(one in the revaluation condition, and one in the control condition) of the task, participants completed a test of recognition memory for the first-stage stimuli from the 
learning phase of the task. (B) Example reward values for a task block. During learning, participants experienced one set of treasure values (original values) and 
learned to navigate to the best chest (in bold) by first navigating to its corresponding animal. In the control condition, reward values remained unchanged during 
relearning, whereas in the revaluation condition, reward values changed so that the best chest (in bold) now belonged to a different animal.
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equivalently memorable (Lu et al., 2020). Scene images were each 
repeated twice during learning, such that 21 unique images were shown 
across the 42 learning trials in each block. To ensure attentiveness to the 
scene images, the learning task involved eight attention-check trials, 
during which a small, cartoon image of a robber was superimposed onto 
a first-stage scene image. Participants were told to press the spacebar if 
they spotted a robber in the environment; they were told that they failed 
to catch the robber if they did not respond. On robber trials, participants 
did not complete the two-stage decision task. The eight scene images 
seen on the attention-check trials were novel within-category scenes that 
were not seen on other trials, and not included in the recognition 
memory test.

During the recognition memory test, participants saw the 42 old 
images from the two learning blocks as well as 42 new images drawn 
from the same two scene categories. Participants were asked to deter
mine if the presented image was ‘Definitely New’, ‘Maybe New’, ‘Maybe 
Old’, or ‘Definitely Old.’ Participants had 10 s to make each response 
and received no feedback. We report full recognition memory results in 
the supplement.

To ensure that child, adolescent, and adult participants fully com
prehended the task, participants completed thorough, interactive in
struction phases prior to its start. Task instructions featured child- 
friendly language and were presented both as text and via an audio 
recording. Participants could not advance each instruction screen until 
the corresponding audio track finished playing. Participants were also 
given the opportunity to practice the two-stage decision task, attention- 
check task, and the memory test before the real trials using a set of 
practice stimuli. At the end of each set of instructions, participants 
completed a set of True/False comprehension questions. There were four 
comprehension questions related to the learning task and two compre
hension questions related to the memory test. After responding to a 
comprehension question, participants saw and listened to an explana
tion for the correct answer. Participants were required to answer all 
questions correctly to proceed in the experiment and were presented 
with the same question again if they made an error.

2.1.3. Analysis approach
We used the ‘lme4’ package (Bates et al., 2015) in R (R Core Team, 

2021) to fit mixed-effects models to our data. Continuous variables were 
z-scored prior to model-fitting, and categorical variables were coded 
using sum contrasts. Age was treated continuously in all analyses. Trials 
in which participants failed to respond within the allotted time limit 
were excluded from analyses (Experiment 1: 0.01 % of trials for children 
aged 7–12, 0.01 % of trials for adolescents aged 13–17, 0.00 % of trials 
for adults; Experiment 2: 0.01 % of trials for children aged 7–12, 0.01 % 
of trials for adolescents aged 13–17, 0.00 % of trials for adults).

For all regression analyses, we began by fitting models that included 
random intercepts for each participant and random slopes for all fixed 
effects and their interactions for each participant (Barr et al., 2013). 
When models failed to converge, we pruned correlations between 
random slopes and intercepts, followed by interactions between random 
slopes, followed by random slopes themselves. Finally, when models 
with random intercepts only failed to converge (due to a lack of varia
tion across subjects), we fit linear models using the ‘stats’ package in R 
with fixed effects only. We assessed the significance of fixed effects using 
Wald tests. We include the full specification for all models in the 
supplement.

3. Results

In Experiments 1 and 2, we asked whether participants across age 
leveraged a mental model of their environment to flexibly update their 
choice behavior when reward outcomes changed, with and without the 
opportunity for offline processing during rest, respectively. In our ana
lyses, we first establish that participants learned to make optimal two- 
stage decisions during the learning phase. Next, we establish that 

when rewards in the environment changed, participants learned to make 
optimal second-stage choices in the relearning phase, and that they 
persist in making these new, optimal second-stage choices in the task’s 
test phase. Finally, we assess whether participants effectively leverage 
structured knowledge to “replan” – meaning we ask whether they up
date their first-stage choices in the final test phase, even in the absence 
of direct experience.

3.1. Participants learned to make optimal two-stage decisions

We first asked whether participants learned to make optimal two- 
stage choices over the course of the learning phase. We analyzed the 
influences of age, trial number, block condition, and their interactions 
on optimal choice via a mixed-effects logistic regression. Choices were 
considered ‘optimal’ (coded as 1) if participants made first- and second- 
stage decisions that would lead to the chest with the most treasure, and 
suboptimal otherwise (coded as 0). Across both experiments, we found 
that participants learned to make optimal choices across trials (Experi
ment 1 (E1): Log-Odds = 8.07, [7.06–9.08], z = 15.68, p < .001; 
Experiment 2 (E2): Log-Odds = 6.87 [6.03–7.72], z = 15.97, p < .001; 
Table S5) (Fig. 1B). We found no significant effect of age on optimal 
choices during learning (E1: Log-Odds = − 0.33 [− 1.48–0.82], z =
− 0.57, p = .57; E2: Log-Odds = − 0.12 [− 1.09–0.85], z = − 0.24, p = .81; 
Table S5), suggesting that participants across our entire age range suc
cessfully learned to make multi-step decisions to navigate to the most 
rewarding treasure chest. Across age, participants learned to select the 
chest with the most treasure very reliably, achieving high accuracy in 
the last ten trials of learning (E1: children 98.9 % (SE = 0.4 %), ado
lescents 99.9 % (SE = 0.1 %), adults 98.9 % (SE = 0.4 %); E2: children 
98.6 % (SE = 0.6 %), adolescents 98.5 % (SE = 0.6 %), adults 99.0 % (SE 
= 0.4 %)). No other effects or interactions were significant (see Sup
plement for full results).

3.2. Successful re-learning of new reward values

After confirming that participants learned to make optimal two-stage 
choices, we next assessed whether they updated their beliefs about the 
most rewarding treasure chests when they experienced new treasure 
amounts in the revaluation task condition. To do so, we examined the 
influence of block condition, age, and number of exposures to each 
second-stage state (adjusted trial number) on optimal choice during 
relearning. In line with the task manipulation, we found a significant 
effect of block condition (E1: Log-Odds = − 0.40 [− 0.67 to − 0.13], z =
− 2.92, p = .003; E2: Log-Odds = − 0.71 [− 1.08 to − 0.35], z = − 3.85, p 
< .001; Table S6), such that participants made fewer optimal choices in 
the revaluation condition in which treasure amounts differed from those 
in the original learning phase versus in the control condition, in which 
treasure amounts remained the same. However, across trials, partici
pants learned the new reward values, making more optimal choices 
across exposures (E1: Log-Odds = 1.53 [1.30–1.75], z = 13.32, p < .001; 
E2: Log-Odds = 1.95 [1.66–2.25], z = 12.93, p < .001; Table S6), 
particularly in the revaluation condition compared to the control con
dition (E1: Log-Odds = − 0.76 [− 0.99 to − 0.54], z = − 6.60, p < .001; 
E2: Log-Odds = − 0.95 [− 1.24 to − 0.67], z = − 6.61, p < .001; Table S6). 
There was no significant effect of age on re-learning performance (E1: 
Log-Odds = 0.10 [− 0.10–0.31], z = 1.01, p = .31; E2: Log-Odds = 0.23 
[− 0.04–0.51], z = 1.69, p = .09; Table S6). Surprisingly however, 
younger participants were less optimal in the control condition 
compared to older participants (marginally in E2) (E1: Log-Odds = 0.32 
[0.12–0.51], z = 3.15, p = .001; E2: Log-Odds = 0.26 [0.01–0.53], z =
1.89, p = .059; Table S6), and demonstrated less improvement with 
experience in Experiment 1 (E1: Log-Odds = 0.19 [0.02–0.36], z = 2.21, 
p = .03; E2: Log-Odds = 0.17 [− 0.04–0.38], z = 1.59, p = .11; Table S6) 
(Fig. 2B), potentially reflecting boredom or disengagement. This effect 
persisted regardless of whether participants encountered the control 
condition before or after the revaluation condition (see Table S7 in the 
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Supplement). Nevertheless, across age, accuracy at the end of re- 
learning was still high (Fig. 2B), indicating that across blocks, partici
pants successfully learned the treasure amounts in the animals’ chests.

To further confirm that participants learned the second-stage reward 
values during relearning, we next examined whether participants made 
optimal second-stage choices without feedback in the test phase 
(Fig. 2C). At test, when presented with each animal, participants chose 

the more rewarding treasure chest at above-chance levels in both the 
revaluation and control conditions (E1: revaluation 68.0 % (SE = 2.5 %), 
control 90.5 % (SE = 1.7 %); E2: revaluation 71.7 % (SE = 2.5 %), 
control 89.1 % (SE = 1.7 %)), confirming that they successfully retained 
and used ‘relearned’ chest values to guide their choices. As in relearning, 
there was a significant effect of block condition on second-stage test 
accuracy such that participants were more accurate in the control 

(caption on next page)
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condition relative to the revaluation condition (E1: Estimate = 0.11 
[0.08–0.14], z = 7.93, p < .001; E2: Estimate = 0.09 [0.06–0.11], z =
6.27, p < .001; Table S7). This difference may reflect forgetting of the 
new reward values from the re-learning phase (but remembering the 
initially learned values from the original, longer learning phase) or a 
belief that the reward environment at test had reverted to the original 
learning environment. However, participants’ above-chance perfor
mance on second-stage test trials suggests that they generally under
stood that their relearning experience should inform their choices at 
test.

Additionally, across conditions, older participants’ second-stage 
choices were slightly more accurate than younger participants (E1: Es
timate = 0.05 [0.02–0.08], z = 2.95, p = .004; Children: 75.6 % (SE =
3.2 %), Adolescents: 77.3 % (SE = 3.1 %), Adults: 84.5 % (SE = 2.4 %); 
E2: Estimate = 0.06 [0.03–0.09], z = 3.83, p < .001; Children: 75.3 % 
(SE = 2.5 %), Adolescents: 75.0 % (SE = 3.6 %), Adults: 89.0 % (SE =
2.2 %); Table S7). There was no significant interaction between age and 
block condition on second-stage accuracy at test (E1: Estimate = 0.00 
[− 0.03–0.02], z = 0.35, p = .73; E2: Estimate = 0.00 [− 0.02–0.03], z =
0.22, p = .83; Table S7), further supporting the idea that age differences 
in the control condition during relearning were due to the control con
dition being less engaging rather than differences in learning the reward 
values.

3.3. Evidence for revaluation of first-stage choices

Finally, we investigated our main question of interest — whether 
participants used their knowledge of the structure of the environment to 
update their multi-step plans in the absence of direct experience. To do 
so, we examined participants’ first-stage choices during the test phase, 
in which they received no feedback. In the revaluation condition, the 
best treasure chest in the relearning phase was associated with a different 
animal than it was during the original learning phase. We hypothesized 
that if participants integrated new reward values with their mental 
model of the task structure, then they would change their first-stage 
choices in the revaluation condition but not the control condition. 
Further, we hypothesized that if revaluation depended on reactivating 
first-stage choices during rest, participants would change their first- 
stage choices in the revaluation condition to a greater degree in 
Experiment 1, which included rest, versus Experiment 2, which did not.

We computed a ‘replanning score’ for each participant for each task 
block, which indexes the extent to which they made different first-stage 
choices in the test phase versus the initial learning phase. Replanning 
was computed by taking participants’ mean first-stage choice accuracy 
on the last 10 trials of the task’s original learning phase and subtracting 
the proportion of first-stage test trials on which they made the original, 
best first-stage choice (see Fig. 2D). This means that if participants 
showed perfect replanning in the revaluation condition (i.e., if they 
performed perfectly at the end of the learning phase and then reliably 
switched to the other first-stage choice at the test phase), they would 

have a replanning score of 1, indicating that they always selected the 
original, best first-stage choice during learning and never selected the 
original, best first-stage choice at test. If they showed no replanning, 
they would have a replanning score of 0, indicating that they made the 
same first-stage choices during the initial learning and test phases. 
Rather than replanning, a change in performance from learning to test 
might also occur due to forgetting. The control condition controls for 
this possibility; In the control condition, a positive replanning score 
measures this effect because in the control condition, adaptive planning 
does not favor switching choices. A larger replanning score (more 
switching) in the revaluation relative to the control condition, in turn, 
indicates successful replanning. For our main analyses, we rely on the 
“replanning score” measure, but we additionally report raw accuracy for 
first-stage test trials (Fig. S1) as well as an analysis of the effect of test 
trial number on first-stage choices (Table S1 and Fig. S2) in the 
Supplement.

In line with our hypothesis, in Experiment 1, we found a significant 
effect of revaluation condition on replanning score (Estimate = − 0.06 
[− 0.10 to − 0.02], z = − 2.68, p = .008, Table S8), indicating that par
ticipants updated their first-stage choices based on their experiences 
with the second-stage rewards during relearning. We found no signifi
cant effect of age (Estimate = 0.02 [− 0.02–0.07], z = 0.94, p = .35, 
Table S8) or interaction between age and block condition on replanning 
score (Estimate = 0.00 [− 0.04–0.04], z = 0.01, p = .99, see Fig. 2D and 
Table S8), suggesting that participants across our age range similarly 
replanned more in the revaluation condition compared to the control 
condition. In Experiment 2, we similarly found a significant effect of 
revaluation condition on replanning score (Estimate = − 0.11 [− 0.15 to 
− 0.06], z = − 4.82, p < .001, Table S8), indicating that participants 
‘replanned’ even without a rest period. As in Experiment 1, the effect of 
block condition on replanning did not vary with age (Estimate = − 0.01 
[− 0.04–0.05], z = 0.22, p = .82, Table S8). However, we observed a 
high degree of variability in replanning across individuals (see Fig. 2D), 
such that some participants did not replan in the revaluation condition, 
or even replanned more in the control condition compared to the 
revaluation condition. To provide further insight into this variability, we 
include an analysis of participants’ replanning as a function of both age 
and their performance on second-stage test trials in the Supplement (see 
Fig. S3). Briefly, in this supplemental analysis, we found that partici
pants who demonstrated greater accuracy on second-stage test trials also 
demonstrated more flexible replanning, and that this effect remained 
consistent across age.

Finally, we directly examined whether the opportunity for rest 
facilitated non-local learning by analyzing data from Experiments 1 and 
2 together. Critically, we did not observe evidence that rest influenced 
replanning; the block condition x experiment interaction on replanning 
score was not significant (Estimate = − 0.02 [− 0.06–0.01], z = − 1.52, p 
= .13, Table S9), with the estimated trend in the direction against the 
hypothesis that rest facilitates planning. In addition, though we initially 
hypothesized that children may benefit more from the opportunity for 

Fig. 2. Results from Experiment 1 and Experiment 2. All analyses treated age continuously; age is binned into groups for visualization purposes. (A) Participants 
learned to navigate to the most rewarding treasure chest (by making optimal first- and second-stage choices) over the course of the learning phase in both exper
iments. Performance improved across trials and did not significantly vary with age. For visualization, the proportion of optimal choices is calculated over bins of 5 
trials, and error bars show standard errors of participant means. (B) In the relearning phase, participants made second-stage choices only and observed the associated 
rewards. In the revaluation condition, in which reward values changed during relearning, participants made fewer optimal choices on early trials, but rapidly learned 
to respond optimally, as they gained additional experience with the new reward values. Younger participants performed slightly worse than older participants. For 
visualization, the proportion of optimal choices is calculated over bins of 2 trials, and error bars reflect standard errors across participant means. (C) Participants 
updated their second-stage choices at test based on reward experience from relearning and performed above chance in both conditions. As in relearning, older 
participants made more accurate choices, and participants across age made more accurate choices in the control condition compared to the revaluation condition. 
Points indicate individual accuracies and bar widths indicate age-group means. Error bars reflect standard errors across participant means. (D) In both experiments, 
participants across age updated their first-stage choices (replanned) more in the revaluation condition compared to the control condition. Replanning scores index 
changes in first-stage choices between the last 10 trials of the initial learning phase and all four test phase trials. Higher replanning scores in the revaluation condition 
relative to the control condition indicate that participants changed their first-stage choices more when they experienced new second-stage reward values during 
relearning. Replanning scores did not vary across age or across experiments. Smaller points indicate individuals’ replanning indices, while the larger points indicate 
age-group means.
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offline replay than adults, we did not find a significant block condition x 
experiment x age interaction, (Estimate = − 0.01 [0.04–0.02], z = 0.72, 
p = .47, Table S9), indicating that we did not observe evidence that rest 
facilitated replanning to a greater extent in younger participants.

4. Interim discussion

In Experiments 1 and 2, we assessed whether participants spanning 
childhood to early adulthood could integrate newly learned reward 
values with structured knowledge to update their behavior in a reward 
revaluation task. We further asked whether this ability depended upon 
the opportunity for offline integration during a rest phase. We found that 
children and adolescents were able to leverage knowledge of the task’s 
transition structure to flexibly update their choice behavior when 
reward values changed. While we initially hypothesized that behavioral 
flexibility would be supported by offline replay, we found that partici
pants demonstrated flexible choice behavior regardless of whether they 
had the opportunity for offline processing during rest. Rest did not 
significantly influence the extent to which children, adolescents, or 
adults replanned.

One possible explanation for these findings is that the 60-s rest 
period included in Experiment 1 was not necessary for participants to 
engage in offline processing or replay. Instead, participants may already 
have reactivated the relevant first-stage choice state immediately after 
experiencing second-stage rewards in the relearning phase (Foster & 
Wilson, 2006; Liu, Mattar, et al., 2021; Singer et al., 2013; Singer & 
Frank, 2009; Wimmer et al., 2023; Wimmer & Shohamy, 2012). Indeed, 
in past studies where the inclusion of a rest phase seemed to influence 
replanning, the relearning phase was performed under cognitive load 
(Gershman et al., 2014). This suggests that cognitive load may have 
reduced the opportunity for offline processing within the relearning 
phase itself and heightened the importance of the rest phase. Addi
tionally, past work that demonstrated a link between replanning and 
neural reactivation during the rest phase did not manipulate rest 
(Momennejad et al., 2018). Therefore, it is possible that the reactivation 
observed during that period did not causally increase replanning — 
instead, participants who demonstrated the greatest reactivation of first- 
stage states during rest may have also reactivated those states to a 
greater extent during the relearning phase itself, facilitating re-planning. 
In the present study, engaging in on-task and offline replay could have 
both enabled effective replanning. However, in cases where reward 
values change throughout the task, and not solely before periods of rest, 
on-task replay may facilitate increased behavioral flexibility over offline 
replay (Eldar et al., 2020; Ólafsdóttir et al., 2017). Future work could 
further examine developmental differences in both on-task and offline 
replay, for example by adding cognitive load manipulation (Gershman 
et al., 2014) to the current paradigm to reduce replay during the 
relearning phase, or by using neural decoding methods (Kurth-Nelson 
et al., 2016; Liu, Dolan, et al., 2021; Schuck & Niv, 2019) to detect 
online and offline replay in a developmental sample.

Another possible explanation for our results is that participants do 
rely on prospective, model-based planning in the task’s test phase. While 
prior work has found that model-based planning increases from child
hood to adulthood, those studies have largely used tasks with greater 
cognitive demands (Decker et al., 2016; Ma et al., 2022; Nussenbaum, 
Scheuplein, et al., 2020; Smid, Kool, et al., 2023). For example, the 
present reward revaluation task includes deterministic transitions be
tween states and deterministic reward outcomes, whereas other tasks 
assessing model-based planning (e.g., ‘the two-step task’ (Daw et al., 
2011)) involve probabilistic transitions between states and probabilistic 
rewards. Therefore, it may be less computationally demanding for par
ticipants to simulate multi-step decisions in the current task. This would 
account for the lack of age-related differences observed here, both 
during the initial learning phase, and in replanning behavior. It is 
important to note, however, that more children were excluded from our 
analysis due to poor initial learning compared to adolescents and adults. 

This means that the children included in our sample were all capable of 
learning to make two-stage decisions to lead to reward. This inclusion 
criterion, while necessary for evaluating replanning behavior, may 
mean that the younger participants in our sample were generally better 
reward learners and more capable of replanning relative to the general 
population of their same-aged peers.

A third possibility is that children and adolescents leverage predic
tive representations — like the successor representation — to behave 
flexibly without the need for either offline replay or iterative model- 
based planning. In the initial learning phase of our task, participants 
may have learned the probabilities of ending up in each second-stage 
state following each first-stage choice, or in other words, they may 
have cached a representation of each first-stage state’s expected suc
cessors. After re-learning new reward values, participants may have 
leveraged these previously learned probabilities to rapidly assess the 
value of each first-stage choice (Dayan, 1993; Gershman, 2018; 
Momennejad et al., 2017; Russek et al., 2017). For example, a partici
pant may have learned that if they chose the octopus, they then typically 
chose the left treasure chest, thereby forming a more temporally abstract 
or ‘predictive’ representation of the octopus that takes into account the 
likely transition to the left chest. When the reward within the left chest 
changed during the revaluation phase, they may have then automati
cally updated their value representation of the octopus. In our revalu
ation task, using a predictive representation like the SR could support 
successful replanning because, although the final ‘best’ chest in the 
revaluation condition was always associated with the initial, worse, 
first-stage choice, it was also always located in that animal’s ‘better’ 
treasure chest that would have been chosen after that first-stage choice 
during learning (Fig. 1). Thus, participants could rely on cached 
knowledge of likely state transitions within the task to update first-stage 
value representations.

While this is an intriguing possibility, to the best of our knowledge, 
no prior studies have examined whether children harness predictive 
representations like the SR to guide their decisions. Successful revalu
ation in Experiments 1 and 2 could be attributed to the use of either 
model-based or SR-based strategies; our data cannot distinguish be
tween the two. Thus, in Experiment 3, we sought to directly investigate 
whether children and adolescents use the SR for flexible decision mak
ing, and whether use of the SR changes across development. We assessed 
use of the SR by adapting a multi-trial reinforcement learning task from 
recent adult work that was designed to distinguish between model-free, 
model-based, and SR-based decision strategies (Kahn & Daw, 2025). We 
hypothesized that use of SR-based strategies might be evident from 
childhood; using the SR to guide decisions does not require the 
computationally expensive simulation of multi-step outcomes at choice 
time (Gershman, 2018), and thus may be a more effective decision 
strategy for children and adolescents, who are good at learning the 
statistical regularities of their environments (Forest, Schlichting, et al., 
2023).

In Experiment 3, we were also interested in whether children and 
adolescents rationally trade off between the use of different decision 
strategies. While the SR can enable efficient and flexible choice, it is only 
useful when the transition structure of the environment is relatively 
stable. Indeed, this is one reason why participants may not have been 
able to rely on it in other, more dynamic tasks used to assess model- 
based planning over development (Daw et al., 2011; Decker et al., 
2016; Piray & Daw, 2021). If the SR that has been learned captures 
environmental statistics that are no longer relevant, use of the SR would 
be maladaptive. In such cases, only the use of model-based planning 
would allow for full behavioral flexibility. In prior work, adults adap
tively reduced reliance on the SR when its underlying assumptions were 
violated (Kahn & Daw, 2025). Here, we hypothesize that children may 
be less able to rationally trade off between SR-based and model-based 
strategies as compared to adults. This idea is supported by evidence 
from prior work suggesting that children may demonstrate reduced 
“meta-control,” such that they do not arbitrate between different 
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decision strategies as effectively as adults (Bolenz & Eppinger, 2022; 
Smid, Ganesan, et al., 2023; Smid, Kool, et al., 2023).

5. Experiment 3

5.1. Methods

5.1.1. Participants
152 participants between the ages of 8–22 years completed Experi

ment 3 online, remotely and asynchronously, and were included in our 
analyses. Of these 152 participants, 50 were children (8.02–12.97 years; 
Mean age = 10.46, n = 25 females), 51 were adolescents (13.03–17.92 
years; Mean age = 15.30, n = 26 females), and 51 were adults 
(18.15–22.69 years; Mean age = 20.59, n = 26 females). An additional 9 
participants completed the study but were excluded from all analyses for 
making 3 or more errors on the task comprehension questions (n = 6 
Children, n = 2 Adolescents, n = 1 Adult). All participants interacted 
with their browser window fewer than 20 times during the study session, 
and all participants responded on more than 95 % of the tasks’ 200 
trials. Sample size and exclusion criteria were defined a priori as in 
Experiments 1 and 2.

Participants were recruited for this experiment in the same manner 
as for Experiments 1 and 2. According to self- or parental-report, 43.4 % 
of participants were White, 30.3 % were Asian, 13.2 % were Black, and 
13.2 % were two or more races. 15.8 % of participants were Hispanic.

5.1.2. Experimental procedure
We adapted a planning task used in a recent adult study (Kahn & 

Daw, 2025) that was designed to distinguish between use of model- 
based (MB) planning and use of the successor representation (SR). 
This task provides a dynamic, trial-by-trial measure of the use of these 
learning strategies, allowing us to robustly assess individual differences 
in their usage and to look at flexible, within-individual arbitration be
tween them.

As in Experiments 1 and 2, the online task was programmed in 
jsPsych and hosted on Pavlovia. Participants completed a thorough, 
interactive instruction phase prior to the start of the task with child- 
friendly language and audio recordings. Participants also completed a 
set of True/False comprehension questions at the end of each instruction 
block, and repeated both the instructions and comprehension questions 
up to three times if they answered them incorrectly. Participants also 
practiced the task using a set of practice stimuli before beginning the 
real task.

In the task, participants sailed to different islands to collect treasure 
from island shops. Participants were instructed to collect as much 
treasure as possible, and were paid a bonus based on the amount that 
they collected. Unlike in Experiments 1 and 2, here, treasure amounts 
were binary (i.e., 1 or 0) on each trial. In the task, participants could visit 
two different islands, each of which had two differently colored shops. 
Upon reaching a shop, participants would receive treasure with a shop- 
specific reward probability. Reward probabilities for all shops changed 
across blocks, which were not signaled to participants and comprised 
between 16 and 24 trials (Fig. 3B). Participants were told that if the 
shopkeepers had been successful recently, they would share their trea
sure with them. They were also told that the fortune of the shopkeepers 
may change and that a shop that provided treasure often early on in the 
task may later provide treasure only rarely.

Importantly, there were two types of trials during the task: traversal 
trials and non-traversal trials (Fig. 3A). These trials were presented 
alternatingly to the participant, and each participant completed 200 of 
each type of trial. In traversal trials, participants made two-stage de
cisions, as they did in the learning phase of Experiments 1 and 2. In the 
first stage, they selected between two islands by pressing the left or right 
arrow keys on a standard keyboard. After sailing to the selected island, 
they then made a second-stage decision about which shop to visit, again 
using the left or right arrow keys. After selecting a shop, they saw the 

outcome of their choice, meaning that they saw that they either received 
or did not receive treasure. Participants pressed the spacebar to collect 
treasure. For traversal trials, participants were allowed up to 10 s to 
make each choice. If they did not make a choice within the time limit, 
they were issued a warning and did not earn any treasure.

In non-traversal trials, participants did not navigate to an island or 
shop. Instead, they were transported to a randomly selected shop 
(without the island visible) and were told that they had arrived at the 
shop on a cloudy day. They then saw, and pressed the spacebar to 
receive, the reward (treasure or no treasure) for that shop. There was no 
response time limit on non-traversal trials. This mirrors the relearning 
phase of Experiments 1 and 2, where participants were given the op
portunity to learn about reward values without making a first-stage 
choice. In this experiment, however, traversal and non-traversal trials 
alternated, allowing for many repeated measures of ‘non-local’ learning 
— here, the influence of non-traversal rewards on subsequent island 
choices.

This task was additionally designed to test whether individual par
ticipants flexibly trade off between MB and SR strategies (Kahn & Daw, 
2025). To test for adaptive arbitration between strategies, shop reward 
probabilities changed between blocks in two different ways (Fig. 3B). 
After congruent block changes, the most rewarding shop was now located 
on a different island as on the previous block, but the best shop on each 
island remained the same. After congruent block changes, the previously 
learned SR was still useful because the most likely ‘successor’ shop for 
each island should remain consistent (e.g., a participant who frequently 
chose Shop A on Island 1 should continue to choose Shop A on that is
land). After incongruent block changes, the most rewarding shop was 
now located on a different island and the most rewarding shop on each 
island also changed. After incongruent block changes, use of the previ
ously learned SR was maladaptive, because it reflects transition proba
bilities based on a now outdated choice policy (e.g., a participant who 
frequently chose Shop A on Island 1 should now change their policy to 
choose Shop B on that island). Participants experienced 21 unsignaled 
block changes over the course of the task, of which 15 were congruent 
and 6 were incongruent. The order of congruent and incongruent block 
changes was randomized across participants. By examining participants’ 
reliance on MB and SR strategies across block types, we could test the 
extent to which they flexibly arbitrated between learning strategies 
based on the predictability of the environment’s transition structure.

5.1.3. Analysis approach
We fit mixed-effects models for Experiment 3 following the same 

approach as for Experiments 1 and 2.

5.1.4. Mixture of agents reinforcement-learning model
In Experiment 3, we additionally characterized participant choice 

behavior with the ‘Mixture of Agents’ reinforcement-learning model 
used in the original adult study (Kahn & Daw, 2025). Briefly, each 
‘agent’ learns the value of each island via a different learning algorithm 
(described in detail below). The model then combines these values to 
determine which island to select on each trial; the weights the model 
assigns to each learning algorithm are determined by three separate 
inverse temperature parameters (βMF , βMB, βSR) that are fitted to each 
individuals’ choices. The values of inverse temperature parameters 
therefore reflect the contributions of MF-, MB-, and SR-based learning to 
each participant’s choices.

In the learning model, all agents similarly update their estimate of 
the value of each shop V(shopi) after observing the trial’s reward 
outcome Rt: 

V(shop)←(1 − α)V(shop)+αRt 

The model includes separate learning rates (α) for traversal and non- 
traversal trials, to capture potential differences in learning about the 
shops after choosing to visit them (on traversal trials) versus passively 
arriving at them (on non-traversal trials). On traversal trials, choices 
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between the shops were modeled with a softmax decision rule, such that: 

P(shopt = shop)∝exp
(

βshopV(shop)+ βstickys LastChosen(shop)
)

where βshop is an additional inverse temperature parameter that captures 
the extent to which participants’ shop choices were value-driven, βstickys 

is a stickiness parameter that captures perseverative tendencies, and 
LastChosen(shop) = 1 if the shop was the most recently selected shop on 
the current island, and 0 otherwise.

The MF agent updates its estimate of the value of the selected island 
on traversal trials, taking into account their previous belief about the 
value of the island, as well as the value of the shop that it selected there, 
such that: 

VMF(island)←(1 − α)VMF(island)+ αVMF(shop)

The MB agent computes the value of each island simply by taking the 
maximum of the values of its two shops. 

VMB(island) = max(V(shop1) ,V(shop2) )

The SR agent learns a matrix, M, of future state occupancies, that 
captures the likelihood of transitioning to each shop from each island. 
On traversal trials, M is updated, such that: 

M[island, shop] = αM1shop=c +(1 − αM)M[island, shop]

where αM is a free parameter that reflects the learning rate of the M 
matrix and c reflects the choice the participant made on that trial. The 
SR agent then computes the island values by taking the product of M and 
R, where R is a vector of estimated shop values: 

VSR(island) = MR 

Finally, as noted above, the choices between islands are modeled as a 
probabilistic decision between them, with the values of the islands 
determined by weighting the island values computed by the three 
learning agents: 

P(islandt = i)∝exp
(

βMFVMF(i)+ βMBVMB(i)+ βSRVSR(i)

+ βstickyI
LastChosen(island)

)

where βstickyI 
is a stickiness parameter that captures perseverative ten

dencies in each participant’s island choices.
Free parameters of the model were estimated using an expectation- 

maximization algorithm (Huys et al., 2011) implemented in Julia. 
Subject-level parameters were modeled as arising from population-level 
Gaussian distributions over subjects, where each Gaussian distribution 
was parameterized by its mean and variance. To estimate developmental 
differences in parameters, we also included an age covariate, which 
allowed the population-level mean to vary linearly with age. We include 
parameter recoverability analyses in the Supplement, which demon
strate the model’s ability to accurately estimate age-related change in 
the inverse temperature parameters of interest.

6. Results

6.1. Participants leveraged mental models to guide choice

To use reward experienced on non-traversal trials to guide their 
subsequent island choices, participants must leverage a mental model 
that links the observed shop to the island on which it is located — a pure 
‘model-free’ (MF) learner would not learn anything about the value of 
the islands from non-traversal trials. Both SR-based and MB decision 
strategies, however, enable this kind of flexible learning from non- 
traversal trial reward outcomes, using different forms of mental 
models. Agents using a fully MB strategy would compute the value of 
each island by conducting step-by-step forward simulations of the two 
sequential choices they could make and the reward outcome they would 
likely experience. Thus, an MB agent would assess the value of each 
island as equivalent to the value of the most rewarding shop on that 
island. The SR offers a simplified model linking islands to outcomes: 
Rather than relying on step-by-step simulation, an SR agent would assess 

Fig. 3. (A) In the task, participants sailed to islands in order to collect treasure from shops on those islands. There were two islands to choose between and two shops 
on each island for a total of four shops. Each shop had a probability of providing a binary reward that changed over the course of the task. The task consisted of 
traversal trials and non-traversal trials. In traversal trials, participants first chose an island to sail to, then chose a shop on that island, and lastly saw the reward 
outcome associated with that shop. In non-traversal trials, participants did not choose an island. Instead, they were told that they ended up at a random shop on a 
cloudy day, and then they saw the reward outcome associated with that shop. (B) Each block of the task consisted of 16–24 trials that alternated between traversal 
and non-traversal trials. Reward probabilities of all shops changed at the start of each new block. These block changes were not explicitly signaled to participants. 
Importantly, two types of block changes occurred throughout the task. In congruent block changes, the best island to choose switched, but the best shop on each 
island remained the same. In incongruent block changes, both the best island and the best shop on each island switched. After congruent block changes, but not after 
incongruent block changes, evaluating the new rewards based on the policy from the previous block results in optimal island choices. The best shop on each island is 
indicated in the figure above via bolded text.

A. Zhang et al.                                                                                                                                                                                                                                   Cognition 266 (2026) 106340 

10 



the value of an island based on the shop it expected to visit after arriving 
there, learned from its prior experiences. Learners using either strategy 
should be more likely to choose to visit an island after experiencing a 
reward from a shop on that island during a non-traversal trial.

We first assessed whether participants across age leveraged struc
tured knowledge to support their decision making by examining how the 
reward they experienced on non-traversal trials affected their subse
quent traversal-trial island choice. Importantly, reward probabilities in 
the task were matched across islands, such that in every block, shops 
sampled from both islands were overall equally likely to yield reward. 
We found that after experiencing reward from a particular shop on a 
non-traversal trial, participants were more likely to choose to visit the 
island where that shop was located on the next traversal trial, relative to 
trials where they did not receive reward (Log-Odds = 0.19 [0.15–0.22], 
z = 10.07, p < .001, Table S10). This effect did not significantly interact 
with age (Log-Odds = 0.01 [− 0.02–0.05], z = 0.74, p = .46, Table S10), 
suggesting that participants across our age range leveraged structured 
knowledge to guide choice.

6.2. Unique signatures of MB and SR-based decision strategies

As previously described, both MB and SR-based strategies could, in 
theory, enable participants to use rewards experienced on non-traversal 
trials to guide their subsequent island choices. However, MB and SR- 
based decision strategies have unique behavioral signatures in this 
task. The extent to which a reward from Shop A influences an MB- 
learner’s island choice will depend on whether the other shop on that 
island (in this case, Shop B) was recently rewarding. If the MB-learner 
recently experienced a reward from Shop B, then they would already 
be likely to choose Island 1, regardless of the reward they experienced 
from Shop A. The extent to which a reward from Shop A influences an 
SR-learner’s island choice will depend not on their beliefs about the 
other shops, but rather on their beliefs about the likely transitions they 
will experience in the environment. These transitions depend on the 
learner’s own policy, and specifically, how often the learner selects Shop 
A on Island 1. At an extreme, if an SR-learner always picks Shop B on 
Island 1, then non-traversal rewards from Shop A should not influence 
their choices, because Shop A is an unlikely successor to Island 1, and 
therefore not part of their Island 1 predictive representation. In other 
words, for an SR agent, the influence of the non-traversal reward 
outcome on their subsequent island choice should be modulated by their 
previous shop choices on that island. These distinct behavioral signa
tures enable measurement of peoples’ use of MB and SR strategies within 
this task, on a trial-by-trial basis.

We looked for behavioral signatures of each decision strategy by 
examining how the most recently experienced reward from the neigh
boring shop and the most recent shop choice made on the island 
modulate the influence of the non-traversal reward outcomes on sub
sequent island choices. As in our prior analysis, we continued to observe 
a significant effect of non-traversal trial reward outcomes on subsequent 
island choices (Log-Odds = 0.25 [0.21–0.29], z = 11.53, p < .001, 
Table S11). Here, we also observed a reward x neighboring shop reward 
interaction effect (Log-Odds = − 0.11 [− 0.14 to − 0.08], z = − 6.78, p <
.001, Table S11), such that participants showed a greater influence of 
non-traversal trial rewards on subsequent island choices when the 
neighboring shop on the island was previously not rewarding (Fig. 4A), 
in line with the behavior of a MB agent. We further observed a reward x 
prior shop choice interaction effect (Log-Odds = 0.12 [0.08–0.15], z =
6.72, p < .001, Table S11), such that participants showed a greater in
fluence of non-traversal trial rewards on subsequent island choices when 
they had previously chosen to visit that shop on the island (Fig. 4B), in 
line with the behavior of an SR-based agent. Thus, participants 
demonstrated evidence of using both step-by-step simulation and 
cached, simplified predictive representations to leverage structured 
knowledge for value-guided choice.

We initially hypothesized that MB learning would increase with age, 
whereas children would show early-emerging reliance on an SR-based 
decision strategy. Here, however, we did not observe evidence for sig
nificant age-related changes in these behavioral signatures of the two 
decision strategies (SR effect: Log-Odds = 0.03 [− 0.01–0.06], z = 1.67, 
p = .09; MB effect: Log-Odds = − 0.03 [− 0.06–0.01], z = − 1.61, p = .11, 
Table S11). In addition, when we restricted our analyses to children only 
(8.02–12.97 years, n = 50), we continued to observe a significant effect 
of non-traversal reward outcomes on subsequent island choices (Log- 
Odds = 0.24 [0.18–0.31], z = 7.40, p < .001, Table S12), as well as 
significant evidence of both MB behavior (reward x neighboring shop 
reward interaction: Log-Odds = − 0.10 [− 0.15 to − 0.05], z = − 3.69, p <
.001, Table S12) and SR-based behavior (reward x prior shop choice 
interaction: Log-Odds = 0.09 [0.03–0.15], z = 3.14, p = .002, 
Table S12). These analyses suggest that in a similar manner as adults, 
children harnessed multiple learning strategies that leverage structured 
knowledge to make decisions.

6.3. Divergent developmental trajectories of different decision strategies

While the simpler regression analyses did not reveal evidence for 
age-related change in choice strategies, they rely on coarse approxi
mations of strategy that only take into account participants’ choices and 

Fig. 4. Participants across age exhibited signatures of model-based and SR-based behavior: Participants demonstrated a stronger effect of non-traversal trial rewards 
on subsequent island choices both when they had previously not received a reward from the neighboring island shop (model-based signature; see main text) and 
when they had previously chosen the island shop on the island (SR-based signature; see main text). There were no significant age-related differences in either of these 
behavioral signatures. Age is binned into groups for visualization purposes. Bar heights indicate age-group means, while error bars reflect standard errors of 
participant means.
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experienced rewards from the most recent trials. To account for par
ticipants’ full history of learning experiences across trials — and indi
vidual differences in how they learned from rewards — we further 
characterized participant choices with the ‘Mixture of Agents’ rein
forcement learning model used in the original adult study (Kahn & Daw, 
2025). Prior developmental work examining the use of structured 
knowledge to guide decision making has taken a similar approach to 
characterize the extent to which behavior reflects the contributions of 
MF- and MB-learning agents (Decker et al., 2016; Nussenbaum, Scheu
plein, et al., 2020; Potter et al., 2017). The model used here additionally 
characterizes the contributions of an SR-based learning agent. Briefly, 
each ‘agent’ learns the value of each island via a different learning al
gorithm (described in detail in the methods). The model then combines 
these values to determine which island to select on each trial; the 
weights the model assigns to each learning algorithm are determined by 
three separate inverse temperature parameters (βMF , βMB, βSR) that are 
fitted to each individuals’ choices. The values of inverse temperature 
parameters therefore reflect the contributions of MF, MB, and SR-based 
learning to each participant’s choices. To estimate developmental dif
ferences in model parameters, we fit this model hierarchically, and 
allowed the population-level mean of all parameters to vary linearly 
with age.

In line with our original regression analyses, we found significant 
evidence for contributions from both MB and SR-based learning mech
anisms, as reflected in population-level βMB and βSR estimates that were 
significantly greater than 0 (βMB: mean = 0.59, SE = 0.10, p < .001; βSR: 
mean = 0.41, SE = 0.07, p < .001, see Fig. 5A). Here, we also found a 
significant influence of MF learning (βMF: mean = 0.40, SE = 0.06, p <
.001). Together, these estimates indicate that participants used a com
bination of multiple learning strategies to guide their decisions, in line 
with prior work (Daw et al., 2011; Decker et al., 2016; Kahn & Daw, 
2025).

We also exploited the model’s sensitivity to individual differences in 
learning to more rigorously test how decision strategies change with 
age. In line with both previous developmental studies (Decker et al., 
2016; Nussenbaum, Scheuplein, et al., 2020; Potter et al., 2017) and our 
initial hypothesis, we found evidence for developmental changes in MB 
learning but not MF learning: βMB significantly increased with increasing 
age (β = 0.04, SE = 0.02, p = .012), but βMF did not (β = 0.02, SE = 0.01, 
p = .129). Here, we also found that βSR did not significantly vary with 
age (β = 0.03, SE = 0.02, p = .117), meaning that we did not observe 
evidence for developmental changes in how people leveraged learned, 
predictive representations to guide their decisions.

6.4. Flexible arbitration between MB and SR-based learning

Finally, we asked whether participants across age flexibly up- or 
down-regulated their use of an SR-based decision strategy depending on 
the predictability of the environment. In stable environments, cached 
representations of environmental structure are useful. However, if the 
structure of the environment changes, then relying on a learned tran
sition structure may be maladaptive because such knowledge may 
rapidly become irrelevant. In changing environments, participants may 
need to rely on MB learning to a greater extent, because such compu
tations enable greater behavioral flexibility. In this learning task, we did 
not manipulate the transition structure of the environment directly, but 
instead manipulated shop reward probabilities, inducing greater change 
in the transitions that participants experienced in some blocks. Across all 
blocks, the shop with the highest probability of yielding reward changed 
islands, imposing continued learning demands on participants 
throughout the entire task. Importantly, however, the ‘predictive rep
resentations’ leveraged by an SR-based learner depend on their relative 
probabilities of choosing each of the two shops on each island. Thus, 
shop reward probabilities changed between blocks in two ways, to either 
conform with or violate these predictions (Fig. 3B). In congruent blocks, 
the best shop on each island remained the same as they were in the 
previous block. Here, participants could still rely on their previously 
learned transition predictions, because they should continue to choose 
the same shop on each island. In incongruent blocks, however, the most 
rewarding shop on each island also changed. Here, participants’ learned 
predictive representations no longer reflect their likely decisions — if 
participants learned that they typically visited Shop A on Island 1 but 
now Shop B is more rewarding, then their more abstract representation 
of Island 1 may now over-incorporate Shop A, which has become largely 
irrelevant to the overall value of selecting the island. On early trials in 
incongruent blocks, relying on the previously learned SR will be mal
adaptive because the participants’ shop preferences on each island 
should change.

To test whether participants flexibly downregulated their use of an 
SR-based decision strategy on incongruent blocks, we fit a variant of our 
‘Mixture of Agents’ reinforcement learning model that allowed for 
changes in the contributions of the three learning ‘agents’ across block 
types. Following the methods from the prior adult study (Kahn & Daw, 
2025), here, rather than directly fitting βMF,βMB,and βSR, we fit two new 
parameters for each block type: βMBSR and wSR, which enabled us to more 
directly test our arbitration hypothesis. The βMBSR parameter, defined as 
βMB + βSR, reflects the overall contribution of both the MB and SR-based 

Fig. 5. A) The mixture of agents model revealed that participants increasingly used a MB learning strategy across development. The weight that participants placed 
on the SR-based and MF learning strategy did not significantly change with age. B) The block-wise mixture of agents model revealed that across age, participants 
relied on SR-based learning strategy to a greater extent in congruent relative to incongruent blocks. wSR estimates reflect normally distributed parameter values; 
within the model wSR values were passed through the unit normal cumulative distribution function and transformed to be between 0 and 1. In both panels, points 
reflect fitted parameter means estimated for individual participants via the hierarchical model. In panel A, the line shows the best-fitting linear regression through the 
points and the shaded region shows the 95 % confidence interval.
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agent, while the wSR parameter, defined as βSR
βMBSR

, reflects the relative 
contribution of the SR-based agent. In this way, wSR estimates directly 
reflect how much participants relied on the SR-based versus MB decision 
strategy, while accounting for overall, more general individual differ
ences in the use of structured knowledge to guide choice. If participants 
adapted their decision strategies to the structure of the environment, we 
would expect wSR in congruent blocks to be higher than wSR in incon
gruent blocks. All estimated parameters were normally distributed; 
Within the model, normally distributed wSR values were passed through 
the unit normal cumulative distribution function and transformed to be 
between 0 and 1.

In line with the findings from the prior adult study (Kahn & Daw, 
2025), participants demonstrated flexible arbitration between decision 
strategies across block types: wSR in congruent blocks (normally 
distributed parameter mean = 0.20, SE = 0.12) was significantly higher 
than wSR in incongruent blocks (normally distributed parameter mean =
− 0.39; SE = 0.21; t(1668) = 5.12, p < .001). Here, we further asked 
whether ‘meta-control’ of decision strategies improved with age. 
Initially, we hypothesized that we might see increasing flexibility across 
development, such that relative to younger participants, older partici
pants would demonstrate both greater use of the SR in congruent blocks 
and reduced use of the SR in incongruent blocks. This would be reflected 
in an age-related increase in wSR in congruent blocks and a decrease in 
wSR in incongruent blocks. However, we did not observe evidence for 
age-related changes in wSR in either block type (ps > 0.07, see Fig. 5B).

7. Interim discussion

In Experiment 3, we characterized reliance on model-free, model- 
based and SR-based strategies in a multi-trial reinforcement-learning 
task with participants aged 8–22 years. In line with past work, we found 
that use of model-based learning strategies increased with age, while use 
of model-free learning strategies did not change significantly across 
development (Cohen et al., 2020; Decker et al., 2016; Nussenbaum, 
Scheuplein, et al., 2020; Palminteri et al., 2016; Potter et al., 2017; 
Smid, Ganesan, et al., 2023). Critically, here we also found that partic
ipants demonstrated signatures of SR-based learning, which did not 
change significantly over development.

Additionally, we replicated and extended the prior adult finding that 
participants adaptively weight their use of MB and SR-based strategies 
to rely less on the SR when its cached predictive representation is no 
longer reflective of current transitions (Kahn & Daw, 2025). Despite past 
work demonstrating developmental differences in meta-control (Bolenz 
& Eppinger, 2022; Smid, Ganesan, et al., 2023; Smid, Kool, et al., 2023), 
we found no significant age-related differences in flexible arbitration 
across our developmental sample. Future work could further investigate 
how children and adolescents trade off between a wider variety of 
strategies based on task demands.

8. General discussion

Beyond the well-established dichotomy of model-based and model- 
free strategies for decision making, there exists a continuum of deci
sion strategies that trade off flexibility and efficiency. In this work, we 
examined whether children and adolescents make use of “intermediate” 
learning strategies to support flexible behavior. In Experiments 1 and 2, 
we asked whether children and adolescents leverage offline replay to 
flexibly update their behavior when rewards in the environment change. 
We demonstrated that from childhood to early adulthood, participants 
used structured task knowledge to guide their choices, but that the op
portunity for offline processing during rest did not significantly influ
ence their behavior. In Experiment 3, we showed that like adults, 
children and adolescents relied on another strategy that balances flexi
bility with computational efficiency, namely the use of predictive 
representations.

Though we did not find evidence that behavioral flexibility depen
ded on offline processing during rest in Experiments 1 and 2, our results 
should not be interpreted as evidence for developmental invariance in 
the role of offline processing in facilitating value-guided decision mak
ing. In other tasks, developmental differences in offline processing may 
indeed relate to differences observed in the use of structured knowledge 
for decision making and inference (Cohen et al., 2022; Schlichting et al., 
2022; Shing et al., 2019). Further, memory replay during offline pro
cessing is thought to depend on interactions between the prefrontal 
cortex and hippocampus, and the connectivity of these regions exhibits 
notable developmental change through adolescence (Blankenship et al., 
2017; Harvey et al., 2023). Additionally, in rodents, it has been shown 
that the distance and speed of replayed spatial sequences increases 
gradually with age over the course of development (Muessig et al., 
2019). Thus, while we did not observe evidence for either age-related 
changes in reward revaluation or for a role of rest-dependent offline 
processing in facilitating the flexible updating of behavior in our rela
tively simple, multi-step decision task, developmental changes in both 
on-task and offline replay may underpin developmental change in value- 
guided choice in more complex environments.

Rather than relying on offline replay, in Experiments 1 and 2, par
ticipants may have relied on predictive representations to update their 
choices. In Experiment 3, we directly demonstrated that the use of the 
SR to guide decision making emerges early in development. This early 
emergence suggests that learning and using predictive representations is 
a fundamental feature of human cognition that guides behavior from 
early in life. By caching predictions about upcoming states, the SR en
ables behavior that is flexible in the face of changing rewards, and 
computationally less demanding than iterative, model-based simulation. 
While prior work has proposed a developmental dissociation between 
learning structured information about a task and using it to guide de
cision making (Hartley et al., 2021), this dissociation itself may be 
overly simplified. Here we see that children are able to learn and use 
structured information in the form of the SR. Therefore, it is likely not 
the case that children learn but do not use structured knowledge, but 
rather that there are many ways to represent learned structure that can 
be leveraged to guide adaptive choice to different degrees in different 
environments. Different tasks may enable or promote reliance on 
different kinds of knowledge representations (Munakata, 2001), which 
may explain why some studies find developmental differences in the use 
of structured knowledge while others do not.

Additionally, while we did not find evidence for developmental 
changes in the use of the SR, it is possible that there are differences in 
how the SR is learned and used that did not emerge in our particular task 
context. Our task consisted of two-stage decisions with only two choices 
at each stage, and it is possible that developmental differences in the use 
of the SR would emerge in tasks that require the learning of more 
complex predictive representations (Nussenbaum et al., 2025). Learning 
the SR requires tracking the statistics of experience, and iteratively 
updating beliefs about which states tend to succeed other states. Prior 
developmental studies of statistical learning have shown that the ability 
to extract statistical structure from continual experience emerges early 
in infancy, but continues to change in subtler ways over the course of 
development (Forest, Schlichting, et al., 2023). From infancy, statistical 
learning mechanisms underpin our ability to learn language, object 
categories, and other patterns present in the natural world (Choi et al., 
2020; Gómez, 2002; Kirkham et al., 2002; Saffran et al., 1996; Teinonen 
et al., 2009). However, evidence suggests that learning the statistics of 
more complex sequences continues to improve with age (Arciuli & 
Simpson, 2011; Potter et al., 2017; Schlichting et al., 2017). Addition
ally, the representations formed through statistical learning may shift 
across development, with younger children demonstrating biases to
ward learning specific patterns rather than broader, more generalizable 
ones (Forest, Abolghasem, et al., 2023; Forest, Schlichting, et al., 2023; 
Pudhiyidath et al., 2020). In line with this literature, future work could 
investigate developmental differences in learning predictive 
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representations from experience, as well as in how differences in pre
dictive representations in turn influence decision making.

The hippocampus is thought to play a crucial role in learning the SR 
(Garvert et al., 2017; Gershman, 2018; Sagiv et al., 2024; Schapiro et al., 
2016; Stachenfeld et al., 2017). Unlike the pronounced changes that 
occur in cortex through adolescence, the hippocampus demonstrates 
more rapid developmental changes in early childhood (Raznahan et al., 
2014; Wierenga et al., 2014), which may facilitate the early learning of 
predictive representations. Less is known about the neurocognitive 
mechanisms involved in using the SR to guide decision making. Prior 
work suggests that representations of state predictions in sensory cortex 
during choice might be involved in use of the SR (Russek et al., 2021) — 
while here we observed early-emerging use of the SR, it is possible that 
these cortical representations, or interactions between the hippocampus 
and cortex (Blankenship et al., 2017; Harvey et al., 2023; Mills et al., 
2016; Somerville & Casey, 2010) — may change across development, 
leading to differences in how the SR is used to guide choice in envi
ronments with greater structural complexity.

With many potential decision strategies in their toolkits, children 
and adolescents still face the challenge of deploying those that are most 
effective for making decisions in diverse contexts. In this work, we show 
that participants across age adaptively trade off between using SR-based 
and MB strategies based on task demands. This suggests that the 
engagement of different learning and decision strategies is sensitive to 
environmental structure. Specifically, here we replicated past findings in 
adults (Kahn & Daw, 2025) demonstrating that the use of the SR 
emerges most strongly in more stable and predictable environments, 
where it is most useful. This finding raises the interesting possibility that 
early experience in predictable environments might facilitate the 
emergence of this general decision strategy (Birn et al., 2017; Mittal 
et al., 2015). Future work could investigate this possibility by looking at 
how the predictability of early life environments influences develop
mental trajectories of the use of predictive representations in contexts 
where such representations are both adaptive and maladaptive (Harhen 
& Bornstein, 2024; McLaughlin et al., 2021; Nussenbaum & Hartley, 
2024). Additionally, previous work has shown that people adapt not 
only their decision strategies, but also the weight they place on recent 
outcomes in response to reward changes in the environment (Behrens 
et al., 2007; Kao et al., 2020; Piray & Daw, 2024). There is evidence that 
even infants and young children adjust how they learn from reward in 
response to the stability of the environment (Neil et al., 2025; Poli et al., 
2025), suggesting early-emerging sensitivity to environmental structure.

Here, across three experiments, we found that when making de
cisions in environments that allow for the use of computationally effi
cient learning strategies, children leverage structured knowledge to 
guide their choices. We further demonstrate that children, adolescents, 
and adults all make similar use of predictive representations to make 
adaptive choices. Our findings demonstrate the need for developmental 
researchers to move beyond simple dichotomies between learning al
gorithms to take into account how the properties of different learning 
environments may enable the effective use of different strategies. 
Grappling with such complexity will deepen our understanding of how 
experiences in different environments facilitate the emergence and 
engagement of adaptive strategies for flexible, value-guided decision 
making across development.
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